微积分等式证明题(最新9篇)

时间:2023-12-01 10:17:57 作者:admin

微积分等式证明题 第1篇

一、原函数

定义1 如果对任一xI,都有

F(x)f(x) 或 dF(x)f(x)dx

则称F(x)为f(x)在区间I 上的原函数。

例如:(sinx)cosx,即sinx是cosx的原函数。 [ln(xx2)

原函数存在定理:如果函数f(x)在区间I 上连续,则f(x)在区间I 上一定有原函数,即存在区间I 上的可导函数F(x),使得对任一xI,有F(x)f(x)。

注1:如果f(x)有一个原函数,则f(x)就有无穷多个原函数。

设F(x)是f(x)的原函数,则[F(x)C]f(x),即F(x)C也为f(x)的原函数,其中C为任意常数。

注2:如果F(x)与G(x)都为f(x)在区间I 上的原函数,则F(x)与G(x)之差为常数,即F(x)G(x)C(C为常数)

注3:如果F(x)为f(x)在区间I 上的一个原函数,则F(x)C(C为任意常数)可表达f(x)的任意一个原函数。

1x2,即ln(xx2)是1x2的原函数。

二、不定积分

定义2 在区间I上,f(x)的带有任意常数项的原函数,成为f(x)在区间I上的不定积分,记为f(x)dx。

如果F(x)为f(x)的一个原函数,则

f(x)dxF(x)C,(C为任意常数)

三、不定积分的几何意义

图 5—1 设F(x)是f(x)的一个原函数,则yF(x)在平面上表示一条曲线,称它为f(x)f(x)的不定积分表示一族积分曲线,它们是由f(x)的某一条积分曲线沿着y轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x的点处有互相平行的切线,其斜率都等于f(x).

在求原函数的具体问题中,往往先求出原函数的一般表达式yF(x)C,再从中确定一个满足条件 y(x0)y0 (称为初始条件)的原函数yy(x).从几何上讲,就是从积分曲线族中找出一条通过点(x0,y0)的积分曲线.

四、不定积分的性质(线性性质)

[f(x)g(x)]dxf(x)dxg(x)dx

k为非零常数) kf(x)dxkf(x)dx(

五、基本积分表

∫ a dx = ax + C,a和C都是常数

∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1 ∫ 1/x dx = ln|x| + C

∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

∫ e^x dx = e^x + C

∫ cosx dx = sinx + C

∫ sinx dx = - cosx + C

∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

∫ tanx dx = - ln|cosx| + C = ln|secx| + C

∫ secx dx =ln|cot(x/2)| + C

= (1/2)ln|(1 + sinx)/(1 - sinx)| + C

= - ln|secx - tanx| + C = ln|secx + tanx| + C

∫ cscx dx = ln|tan(x/2)| + C

= (1/2)ln|(1 - cosx)/(1 + cosx)| + C

= - ln|cscx + cotx| + C = ln|cscx - cotx| + C

∫ sec^2(x) dx = tanx + C

∫ csc^2(x) dx = - cotx + C

∫ secxtanx dx = secx + C

∫ cscxcotx dx = - cscx + C

∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C

∫ dx/√(a^2 - x^2) = arcsin(x/a) + C

∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C

∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C

∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C ∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C ∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C

六、第一换元法(凑微分)

设F(u)为f(u)的原函数,即F(u)f(u) 或 f(u)duF(u)C 如果 u(x),且(x)可微,则 dF[(x)]F(u)(x)f(u)(x)f[(x)](x) dx

即F[(x)]为f[(x)](x)的原函数,或

f[(x)](x)dxF[(x)]C[F(u)C]u(x)[f(u)du]因此有

定理1 设F(u)为f(u)的原函数,u(x)可微,则

f[(x)](x)dx[f(u)du]

公式(2-1)称为第一类换元积分公式。 u(x)u(x) (2-1)

f[(x)](x)dxf[(x)]d(x)[f(u)du]u(x)

1f(axb)d(axb)1[f(u)du]f(axb)dxuaxb

定积分证明题方法总结5篇(扩展4)

——考研数学定积分备考技巧解析合集三篇

微积分等式证明题 第2篇

关于定积分的定义及性质,这里要求同学们一定要理解近似、求和还有取极限这几个步骤。与此同时还要求同学们知道其几何意义及定义中我们所要注意的地方。对定积分定义这一部分的考察在每年考研中几乎都是必考内容。因此希望这一部分能引起同学们的一定的重视。关于定积分的性子这一块,同学们关键主要在于理解。定积分中的区间可加性、积分中值定理、比较定理这几个是同学要掌握的。而对于微积分基本定理这一块的知识点是非常重要的。这里面有一个新的函数叫做变上限积分函数。关于变上限积分函数的两个性子是我们一定要掌握的。关于切线与法线,以及单调性、极值;凹凸性的应用与变上限积分函数是可以相关联的。有了变上限积分函数的定义后,我们就要注意变限积分求导问题了,有关变上限积分的求导,希望同学们能够会证明,以前考研真题中也出现过此类问题。所以,应当值得我们重视。

定积分证明题方法总结5篇(扩展5)

——定积分教学设计实用一篇

微积分等式证明题 第3篇

一、不定积分的概念和性质

若F(x)f(x),则f(x)dxF(x)C, C为积分常数不可丢!

性质1f(x)dxf(x)或 df(x)dxf(x)dx或

df(x)dxf(x) dx

性质2F(x)dxF(x)C或dF(x)F(x)C

性质3[f(x)g(x)]dx

或[f(x)g(x)]dx

二、基本积分公式或直接积分法

基本积分公式 f(x)dxg(x)dx g(x)dx;kf(x)dxkf(x)dx. f(x)dx

kdxkxC

xxdx1x1C(为常数且1)1xdxlnxC ax

edxeCadxlnaC xx

cosxdxsinxCsinxdxcosxC

dxdx22tanxCC

secxtanxdxsecxCcscxcotxdxcscxC

dxarctanxCarccotx

C()1x2arcsinxC(arccosxC)

直接积分法:对被积函数作代数变形或三角变形,化成能直接套用基本积分公式。 代数变形主要是指因式分解、加减拆并等;三角变形主要是指三角恒等式。

三、换元积分法:

1.第一类换元法(凑微分法)

g(x)dxf((x))(x)dxf((x))d(x)

注 (1)常见凑微分:

u(x)f(u)du[F(u)C]u(x).

111dxd(axc), xdxd(x2c),2dc), dxd(ln|x|

c) a2x1dxd(arctanx)d(arccotxd(arcsinx)d(arccosx) 1+x2

(2)适用于被积函数为两个函数相乘的情况:

若被积函数为一个函数,比如:e2xdxe2x1dx, 若被积函数多于两个,比如:sinxcosx1sin4xdx,要分成两类;

(3)一般选择“简单”“熟悉”的那个函数写成(x);

(4)若被积函数为三角函数偶次方,降次;奇次方,拆项;

2.第二类换元法

f(x)dxx(t)f((t))(t)dtf((t))(t)dtt1(x)G(t)Ct1(x) 常用代换类型:

(1) 对被积函数直接去根号;

(2) 到代换x1; t

(3) 三角代换去根号

atantxasect、

xasint(orxacost)

f(xdx,t

f(xx,x

asect

f(xx,xasint

f(xx,xatant f(ax)dx,ta

f(xx,t

三、分部积分法:uvdxudvuvvduuvuvdx.

注 (1)u的选取原则:按“ 反对幂三指” 的顺序,谁在前谁为u,后面的为v;

(2)uvdx要比uvdx容易计算;

(3)适用于两个异名函数相乘的情况,若被积函数只有一个,比如:

arcsinx1dx,

(4)多次使用分部积分法: uu求导 vv积分(t;

微积分等式证明题 第4篇

定积分

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的.极限。

定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个持续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

微积分等式证明题 第5篇

一、教学目的

(一)教学目标

1、认知上:通过本节课的学习,使学员了解定积分的概念以及利用定义求函数定积分的方法。

2、能力上:通过学习,培养学员分析归纳、抽象概括以及联系与转化的思维能力,具体体会从具体到抽象的思维方法。

3、思想目标:在教学过程中,使学员理解定积分定义中体现的辩证思想,并将其利用到实际生活中去解决实际问题。通过学习,激发学员学习数学的兴趣,养成严谨的学习态度。

(二)教学重点和难点

了解定积分的概念,会利用定义求函数定积分的方法。本节课的难点的理解定积分的思想。

(三)教学方法

主要运用讲授法,并结合启发式教学法,引导学员从实际生活中的“**国土面积”的求法过程中,体会发现定积分的概念。根据定积分理论的特殊重要性(突破了初等数学与高等数学的又一界限;实现“曲”与“直”的转变;提出了求解一类实际问题的一种重要的方法与思想:分割――代替――求和――取极限),充分贯彻“以学为主”,发挥学员的积极性,加强启发性原则及理论联系实际原则的贯彻。

二、教学创新

(一)深入挖掘,整合教材

通过深入挖掘教材,我对本节课内容进行了重新设计,突破了传统的教学模式。本节课并不是直接求曲边梯形的面积,进而给出定积分的定义。而是通过对现实生活中**国土面积的实际求法的探究,引出如何来求不规则图形的面积,进而激发学生的学习热情的兴趣。进而提出求解不规则图形的面积可以通过求解曲边梯形面积的方法来求,依此引出本节课的引例。而对于曲边梯形的面积,在计算过程中,贯穿了以不变代变、化整为零、化零为整等哲学思想,通过“分割――代替――求和――取极限”四个步骤求出了曲边梯形的面积,即固定格式和的极限,进而给出了定积分的定义。并且对于定义,分别从结构、记号、实质、存在性和几何意义等方面对定义进行了分析,从而加深了学生对定积分概念的理解。这种设计方式既符合学员基础较差的实际特点,又符合学员从感性到理性,从具体到抽象的认知规律。

(二)矛盾对比,引出重点

由于“直和曲、整体和局部”是相互对立的矛盾,通过启发式教学法,借助于赵州桥的局部建造图示,自然得出了在局部上以直代曲的方法,来近似的给出曲边梯形的面积。这种设计,体现了矛盾转化的思想,对比自然,便于理解。

(三)联系实际,加深理解

数学来源实际,又服务于实际。在数学教学中,只有联系了实际生活,才能体现出数学的价值,并激发学员对学习数学的兴趣。本节课,多处引入了实际生活中实例,通过**国土面积的求法引出了本节课要学习的引例,又通过赵州桥的局部截面图,引出了局部上以直代曲、以不变代变的思想,进而解决解决了本节课引例的问题,从而给出了定积分的定义。

三、教学实施

下面我根据本节课的实际教学经验和教学效果,介绍下本节课的实际教学过程:

(一)为了激发学员学习数学的兴趣,本节课我首先从现实生活中的**国土面积的`求法入手,引出了本节课的引例,求曲边梯形的面积问题。

(二)为了加强学生的理解,我本节课并不是直接给出曲边梯形面积的求法。而是借助于赵州桥局面截面图,使学员理解局部上以直代曲、以不变代变的思想。进而借助于这种思想,采用化整为零、近似代替、合零为整和取极限的方法,通过“分割――代替――求和――取极限”这四个步骤,求出了曲边梯形面积的精确值,即固定格式和的极限,进而引出的定积分的概念。

(三)为了加强大家对定积分定义的把握,对于定义,我分别从结构(一个前提,三步加工,一种检验)、记号、实质(固定格式和的极限)、几何意义等几个方面对定积分的定义进行了仔细的分析,并总结出了利用定义求一个函数在某一区间上的定义的方法。

(四)介绍了定积分的运算法则,并且借助于定积分的几何意义,分别介绍了定积分的性质和积分中值定理。通过这些知识,可以很容易的求出一个函数的定积分。

通过本节课的学习,不仅使学员掌握了定积分的概念,以及求函数在某一个区间上的定积分的方法。并且也使学员了解到如何来求现实生活中不规则图形的方法,即求这个不规则图形的定积分。

定积分证明题方法总结5篇(扩展6)

——定积分的几何意义是什么?合集一篇

微积分等式证明题 第6篇

最后,就是有关定积分的应用部分了。这一块应用希望童鞋们要掌握住,其主要就是利用微元法在几何上应用,对于数一和数二的同学还要求掌握物理上面的应用。而这里,同学们一定要知道数学一、二、三的区别。数学三的同学要掌握用定积分求面积及简单的体积。而对于数学一和数学二还要求掌握用定积分求曲线弧长、旋转曲面面积。而数学一和数学二也要掌握物理方面的应用,这里主要要求数一数二的同学掌握用定积分求变力做功、抽水做功及液太静压力和质心问题。而这里最要的是同学们一定要掌握微元法这种思想方法。

微积分等式证明题 第7篇

一、原函数

定义1 如果对任一xI,都有F(x)f(x) 或 dF(x)f(x)dx

则称F(x)为f(x)在区间I 上的原函数。

例如:(sinx)cosx,即sinx是cosx的原函数。 [ln(xx2)

原函数存在定理:如果函数f(x)在区间I 上连续,则f(x)在区间I 上一定有原函数,即存在区间I 上的可导函数F(x),使得对任一xI,有F(x)f(x)。

注1:如果f(x)有一个原函数,则f(x)就有无穷多个原函数。

设F(x)是f(x)的原函数,则[F(x)C]f(x),即F(x)C也为f(x)的原函数,其中C为任意常数。

注2:如果F(x)与G(x)都为f(x)在区间I 上的原函数,则F(x)与G(x)之差为常数,即F(x)G(x)C(C为常数)

注3:如果F(x)为f(x)在区间I 上的一个原函数,则F(x)C(C为任意常数)可表达f(x)的任意一个原函数。

1x2,即ln(xx2)是1x2的原函数。

二、不定积分

定义2 在区间I上,f(x)的带有任意常数项的原函数,成为f(x)在区间I上的不定积分,记为f(x)dx。

如果F(x)为f(x)的一个原函数,则

f(x)dxF(x)C,(C为任意常数)

三、不定积分的几何意义

图 5—1 设F(x)是f(x)的一个原函数,则yF(x)在平面上表示一条曲线,称它为f(x)f(x)的不定积分表示一族积分曲线,它们是由f(x)的某一条积分曲线沿着y轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x的点处有互相平行的切线,其斜率都等于f(x).

在求原函数的具体问题中,往往先求出原函数的一般表达式yF(x)C,再从中确定一个满足条件 y(x0)y0 (称为初始条件)的原函数yy(x).从几何上讲,就是从积分曲线族中找出一条通过点(x0,y0)的积分曲线.

四、不定积分的性质(线性性质)

[f(x)g(x)]dxf(x)dxg(x)dx

k为非零常数) kf(x)dxkf(x)dx(

五、基本积分表

∫ a dx = ax + C,a和C都是常数

∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1 ∫ 1/x dx = ln|x| + C

∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

∫ e^x dx = e^x + C

∫ cosx dx = sinx + C

∫ sinx dx = - cosx + C

∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

∫ tanx dx = - ln|cosx| + C = ln|secx| + C

∫ secx dx =ln|cot(x/2)| + C

= (1/2)ln|(1 + sinx)/(1 - sinx)| + C

= - ln|secx - tanx| + C = ln|secx + tanx| + C

∫ cscx dx = ln|tan(x/2)| + C

= (1/2)ln|(1 - cosx)/(1 + cosx)| + C

= - ln|cscx + cotx| + C = ln|cscx - cotx| + C

∫ sec^2(x) dx = tanx + C

∫ csc^2(x) dx = - cotx + C

∫ secxtanx dx = secx + C

∫ cscxcotx dx = - cscx + C

∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C

∫ dx/√(a^2 - x^2) = arcsin(x/a) + C

∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C

∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C

∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C ∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C ∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C

六、第一换元法(凑微分)

设F(u)为f(u)的原函数,即F(u)f(u) 或 f(u)duF(u)C 如果 u(x),且(x)可微,则 dF[(x)]F(u)(x)f(u)(x)f[(x)](x) dx

即F[(x)]为f[(x)](x)的原函数,或

f[(x)](x)dxF[(x)]C[F(u)C]u(x)[f(u)du]因此有

定理1 设F(u)为f(u)的原函数,u(x)可微,则

f[(x)](x)dx[f(u)du]

公式(2-1)称为第一类换元积分公式。 u(x)u(x) (2-1)

f[(x)](x)dxf[(x)]d(x)[f(u)du]u(x)

1f(axb)d(axb)1[f(u)du]f(axb)dxuaxb

微积分等式证明题 第8篇

1、原函数存在定理

●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。

●分部积分法

如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。

2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

定积分

1、定积分解决的典型问题

(1)曲边梯形的面积(2)变速直线运动的路程

2、函数可积的充分条件

●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

3、定积分的若干重要性质

●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。

●性质设M及m分别是函数f(x)在区间[a,b]上的'最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点,使下式成立:∫abf(x)dx=f()(b-a)。

4、关于广义积分

设函数f(x)在区间[a,b]上除点c(a

定积分的应用

1、求平面图形的面积(曲线围成的面积)

●直角坐标系下(含参数与不含参数)

●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)

●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)

●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)

●功、水压力、引力

●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

微积分等式证明题 第9篇

一、不定积分计算方法

1.凑微分法

2.裂项法

3.变量代换法

1)三角代换

2)根幂代换

3)倒代换

4.配方后积分

5.有理化

6.和差化积法

7.分部积分法(反、对、幂、指、三)

8.降幂法

二、定积分的计算方法

1.利用函数奇偶性

2.利用函数周期性

3. 参考不定积分计算方法

三、定积分与极限

1.积和式极限

2.利用积分中值定理或微分中值定理求极限

3.洛必达法则

4.等价无穷小

四、定积分的估值及其不等式的应用

1.不计算积分,比较积分值的大小

1)比较定理:若在同一区间[a,b]上,总有

f(x)>=g(x),则>= ()dx

2)利用被积函数所满足的不等式比较之a)

b)当0 <兀/2时,2/兀<<1

2.估计具体函数定积分的值

积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则

M(b-a)<= <=M(b-a)

3.具体函数的定积分不等式证法

1)积分估值定理

2)放缩法

3)柯西积分不等式

≤ %

4.抽象函数的定积分不等式的证法

1)拉格朗日中值定理和导数的有界性

2)积分中值定理

3)常数变易法

4)利用泰勒公式展开法

五、变限积分的导数方法

1、经验总结

(1)定积分的定义:分割—近似代替—求和—取极限

(2)定积分几何意义:

①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积ab

②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a

(3)定积分的基本性质:

①kf(x)dx=kf(x)dx aabb

②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa

③f(x)dx=f(x)dx+f(x)dx aac

(4)求定积分的方法:baf(x)dx=limf(i)xi ni=1nbbb***b

①定义法:分割—近似代替—求和—取极限②利用定积分几何意义

’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba