高中数学几何证明题定理(推荐3篇)

时间:2023-12-20 14:52:43 作者:admin

高中数学几何证明题定理 第1篇

高中几何证明

已知平行四边形ABCD,过ABC三点的圆O1,分别交于、过CDF三点的圆O2交AD于G 。设圆半径分别为R,r。

1.求证AC^2=AG*AD

连接AC、GC。利用两个圆转化角的关系,

∠AGC = 180 - ∠DGC = 180 - ∠DFC = ∠BFC = ∠BAC = ∠ACD

于是两个三角形ACG和ADC相似。第一问由此立得。

同样利用上述相似,∠GCA = ∠ADC = ∠ABC。于是由“弦切角等于圆周角”,说明GC与圆O1相切。于是GC^2 = GE*GA。

在两个圆中利用正弦定理,不难发现R/r = BC/CD = AD/CD。此时

AD/EG = AG*AD/AG*EG = AC^2/GC^2 = (AC/GC)^2 = (AD/CD)^2

最后一个等式仍然源于前述相似

因为不能上传图片,,所以口叙述一下,,高手们都可以想象出来吧

在一个圆的圆上选不重合的四点,,,连接成一个非平行四边形非梯形的四边形,,也就是内切四边形吧,,然后延长其中两条边,,交于点A,,再延长另外两条边交于点B,,然后过A点做圆的两条切线,,切线交圆于点C和D,,怎样证明B,C,D共线?

用调和点列的方法较为容易 但方法的掌握不在高中的`要求内

下面采用简单的定理来证明 比较麻烦

首先,设圆内接四边形为四边形ABCD,AB与DC交于点P,AD与BC交于点Q,过点Q做圆O的两条切线,切点分别为点E和点F.

再设AC与BD交于点R,下面来证明一个更强的结论:P、F、R、E共线.

设OQ交EF于L,PR交AQ于M,EF交AQ于点M',连结OF、OE、AL、OA、OD,并延长AL到S.

由Menelaus定理,

AB/BP×PC/CD×DQ/QA=1 -------------------------------------------------------------------------------1

由Ceva定理,

AB/BP×PC/CD×DM/MA=1 -------------------------------------------------------------------------------2

由1、2,

DM/MA=DQ/QA --------------------------------------------------------------------------------*

另一方面,

由射影定理,

QE^2=QL×QO ----------------------------------------------------------------------------------------------3

由切割线定理,

QE^2=QD×QA ----------------------------------------------------------------------------------------------4

由3,4,

QL*QO=QD*QA

所以O,L,D,A四点共圆

高中数学几何证明题定理 第2篇

正弦定理证明

1.三角形的正弦定理证明:

步骤1.

在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H

CH=a・sinB

CH=b・sinA

∴a・sinB=b・sinA

a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步骤2.

证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.

连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

a/SinA=BC/SinD=BD=2R

类似可证其余两个等式。

2.三角形的余弦定理证明:

平面几何证法:

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB

b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2

b^2=c^2+a^2-2ac*cosB

cosB=(c^2+a^2-b^2)/2ac

在△ABC中,AB=c、BC=a、CA=b

则c^2=a^2+b^2-2ab*cosC

a^2=b^2+c^2-2bc*cosA

b^2=a^2+c^2-2ac*cosB

下面在锐角△中证明第一个等式,在钝角△中证明以此类推。

过A作AD⊥BC于D,则BD+CD=a

由勾股定理得:

c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2

所以c^2=(AD)^2-(CD)^2+b^2

=(a-CD)^2-(CD)^2+b^2

=a^2-2a*CD +(CD)^2-(CD)^2+b^2

=a^2+b^2-2a*CD

因为cosC=CD/b

所以CD=b*cosC

所以c^2=a^2+b^2-2ab*cosC

题目中^2表示平方。

谈正、余弦定理的多种证法

聊城二中 魏清泉

正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.

定理:在△ABC中,AB=c,AC=b,BC=a,则

(1)(正弦定理) = = ;

(2)(余弦定理)

c2=a2+b2-2abcos C,

b2=a2+c2-2accos B,

a2=b2+c2-2bccos A.

一、正弦定理的证明

证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有

AD=bsin∠BCA,

BE=csin∠CAB,

CF=asin∠ABC。

所以S△ABC=abcsin∠BCA

=bcsin∠CAB

=casin∠ABC.

证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有

AD=bsin∠BCA=csin∠ABC,

BE=asin∠BCA=csin∠CAB。

证法三:如图2,设CD=2r是△ABC的外接圆

的直径,则∠DAC=90°,∠ABC=∠ADC。

证法四:如图3,设单位向量j与向量AC垂直。

因为AB=AC+CB,

所以jAB=j(AC+CB)=jAC+jCB.

因为jAC=0,

jCB=| j ||CB|cos(90°-∠C)=asinC,

jAB=| j ||AB|cos(90°-∠A)=csinA .

二、余弦定理的.证明

法一:在△ABC中,已知 ,求c。

过A作 ,

在Rt 中, ,

法二:

,即:

法三:

先证明如下等式:

证明:

故⑴式成立,再由正弦定理变形,得

结合⑴、 有

即 .

同理可证

三、正余弦定理的统一证明

法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,

∴C′(acos(π-B),asin(π-B))=C′(-acos B,asin B).

根据向量的运算:

=(-acos B,asin B),

= - =(bcos A-c,bsin A),

(1)由 = :得

asin B=bsin A,即

= .

同理可得: = .

∴ = = .

(2)由 =(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A,

又| |=a,

∴a2=b2+c2-2bccos A.

同理:

c2=a2+b2-2abcos C;

b2=a2+c2-2accos B.

法二:如图5,

,设 轴、 轴方向上的单位向量分别为 、 ,将上式的两边分别与 、 作数量积,可知

将(1)式改写为

化简得b2-a2-c2=-2accos B.

即b2=a2+c2-2accos B.(4)

高中数学几何证明题定理 第3篇

初中几何证明

因为ABCD菱形

所以AD=DC 角cdb=角adb

因为AP=AP

所以DCP全等 DAP

所以PC=PA AP=PC 角DCP=角DAP

2因为ABCD菱形

所以DF平行ap

所以角BAP=角F

因为 角DCP=角DAP

所以角PCE=角BAP

所以角F=角PCE

因为角CPE=角 CPF

所以三角形PCE相似于三角形PFC

因为PC=AP

所以AP2=PEXPF

CE=EF=4

证明:

因为:CE⊥AD

所以:

因为:AD平分∠CAB

所以:

在三角形AEC和三角形AEF中

AE=AE

所以:三角形AEC全等于三角形AEF

所以:CE=EF

因为,∠ACB=90°,CE⊥AD

所以:三角形ACE相似于三角形DEC

所以:CE*CE=AE*AD=16

所以:CE=4

所以:CE=EF=4

D是RtΔABC的斜边BC上一点,且ΔABD与ΔACD的'内切圆相等,S表示RtΔABC的面积。求证:S=AD^2。

对于任意ΔABC,D是边BC上一点,如果ΔABD与ΔACD的内切圆相等,则有

AD^2=[(CA+AB)^2-BC^2]/4 (1)

下面先证这一命题。设AD=x,则

BD/CD=S(ABD)/S(ACD)=(AB+x+BD)/(CA+x+CD) (2)

由余弦定理得:

BD/CD=(x^2-AB^2+BD^2)/(-x^2+CA^2-CD^2) (3)

又BD+CD=BC (4)

根据以上三式,可推得(1)式.

因为ΔABC是直角三角形,BC为斜边,由勾股定理得:

BC^2=CA^2+AB^2, (5)

又RtΔABC的面积S=CA*AB/2。 (6)

根据(1),(5),(6)式得:

AD^2=[(CA+AB)^2-BC^2]/4=CA*AB/2=S

证明 设S1,S2分别表示ΔABD与ΔACD的面积.

作DE⊥AB于E,DF⊥CA于F。设AB=c,CA=b,BD=n,CD=m。

由相似三角形知:

DE=nb/(n+m), DF=mc/(n+m),

在RtΔADE中,由勾股定理得:

AD^2=(n^2*b^2+m^2*c^2)/(n+m)^2。

因为ΔABD与ΔACD的内切圆半径相等,即

2S1/(AD+c+n)=2S2/(AD+b+m)

且S1:S2=n:m,

有n/(AD+c+n)=m/(AD+b+m)

<==> AD(m-n)=nb-mc

若m=n,则得 b=c,S=AD^2 显然成立。

若m≠n,则

(nb-mc)^2/(m-n)^2=(n^2*b^2+m^2*c^2)/(n+m)^2。

<==> n^2*b^2+m^2*c^2=bc*(n+m)^2/2,

即得 S=AD^2。